3.131 \(\int \frac{1}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=114 \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac{5 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - (5*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sq
rt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - Tan[c + d*x]/(2*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.115711, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.357, Rules used = {3777, 3920, 3774, 203, 3795} \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac{5 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(-3/2),x]

[Out]

(2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - (5*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sq
rt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - Tan[c + d*x]/(2*d*(a + a*Sec[c + d*x])^(3/2))

Rule 3777

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(Cot[c + d*x]*(a + b*Csc[c + d*x])^n)/(d*(
2*n + 1)), x] + Dist[1/(a^2*(2*n + 1)), Int[(a + b*Csc[c + d*x])^(n + 1)*(a*(2*n + 1) - b*(n + 1)*Csc[c + d*x]
), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{\int \frac{-2 a+\frac{1}{2} a \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{\int \sqrt{a+a \sec (c+d x)} \, dx}{a^2}-\frac{5 \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}+\frac{5 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac{5 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 23.8193, size = 5534, normalized size = 48.54 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[c + d*x])^(-3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.125, size = 370, normalized size = 3.3 \begin{align*} -{\frac{1}{4\,d{a}^{2} \left ( \cos \left ( dx+c \right ) +1 \right ) \sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( 4\,\sin \left ( dx+c \right ){\it Artanh} \left ( 1/2\,{\frac{\sin \left ( dx+c \right ) \sqrt{2}}{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sqrt{2}\cos \left ( dx+c \right ) +5\,\sin \left ( dx+c \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \cos \left ( dx+c \right ) +4\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sin \left ( dx+c \right ) \sqrt{2}}{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sin \left ( dx+c \right ) +5\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -2\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2\,\cos \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/4/d/a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(4*sin(d*x+c)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*cos(d*x+c)+5*sin(d*x+c)*(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*cos(d
*x+c)+4*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+5*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+
c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-2*cos(d*x+c)^2+2*cos(d*x+c))/(cos(d*x+c)+1)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(-3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 3.11438, size = 1319, normalized size = 11.57 \begin{align*} \left [-\frac{5 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{-a} \log \left (-\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 8 \,{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac{5 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 8 \,{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c)
+ a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*
cos(d*x + c) + 1)) + 8*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqr
t((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 4*s
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c)
 + a^2*d), 1/4*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 8*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan
(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*cos(d*x + c)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a \sec{\left (c + d x \right )} + a\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((a*sec(c + d*x) + a)**(-3/2), x)

________________________________________________________________________________________

Giac [B]  time = 11.4785, size = 375, normalized size = 3.29 \begin{align*} \frac{\frac{5 \, \sqrt{2} \sqrt{-a} \log \left ({\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{2 \, \sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{8 \, \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{8 \, \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/8*(5*sqrt(2)*sqrt(-a)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(a^2*sgn(
tan(1/2*d*x + 1/2*c)^2 - 1)) + 2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/(a^2*sgn(tan
(1/2*d*x + 1/2*c)^2 - 1)) - 8*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2
- a*(2*sqrt(2) + 3)))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) + 8*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c)
- sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d